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The research on combination #ow of planar oscillatory #ow plus an in-line steady stream is
of importance to the situation of structures in waves and current. The combination #ow has
not been studied extensively. There is still little information about the e!ect of current and
about combined e!ect of current and waves on hydrodynamic loading of the structures. The
present study investigates the combination #ow around a circular cylinder using a vortex-based
method incorporating vortex moving particles (discrete vortices) with a "nite-di!erence scheme
for the vorticity di!usion. The main attention is paid to the e!ects of a small current on in-line
#uid forces and vortex patterns in the wake. Morison's equation and an equation with two drag
terms are examined. The results show that the presence of a small current in an oscillatory #ow
can reduce the drag coe$cient signi"cantly. Morison's equation gives reasonably good predic-
tions for the in-line forces for an oscillatory #ow plus a small current. The current tends to bring
the whole vortex wake downstream and tries to form the stable Karman asymmetrical form in
the downstream wake. The present results show certain agreement with some previous experi-
mental results. ( 2000 Academic Press
1. INTRODUCTION

FLOW AROUND CYLINDERS has been a research topic in #uid mechanics for decades because of
its complex physical phenomena, such as separation and vortex shedding, and also its
practical importance in many industrial "elds. In practice, the problems arise from the
interest in predicting loads on structures due to the #uid motion. The study of a two-
dimensional oscillatory #ow around a cylinder is often practically related to the case of
a cylindrical structure in waves. When the vertical velocity component is neglected, the
wave #ow around a vertical column of a tension leg platform or "xed jacket structure, and
the #ow around a #exible vertical cylinder such as a riser pipe are strongly similar to
a sinusoidally oscillating planar #ow about a cylinder. The present research into harmonic
oscillatory #ow combined with a steady #ow past a circular cylinder is of importance to the
situation of structures in waves and current.

For a planar oscillatory cross-#ow about a circular cylinder, there has been a large
number of experimental and numerical studies carried out, which provide the basic
knowledge to further understand more complex wave #ows such as waves plus currents. It
is known that the in-line force F

x
on a circular cylinder in an oscillatory #ow can be

represented by a sum of drag and inertial forces, which is known as Morison's equation
(Morison et al. 1950),
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where o is the density of #uid, D the diameter of the cylinder, u(t) the velocity of #ow, and
t the time. The drag and inertia coe$cients are C

d
and C

m
which are assumed constant over
0889}9746/00/040403#26 $35.00/0 ( 2000 Academic Press



404 C. Y. ZHOU AND J. M. R. GRAHAM
the #ow cycle and may be obtained through Fourier analysis. It was shown that C
d

and
C

m
are functions of a parameter ;

w
¹/D (Keulegan & Carpenter 1958), where ;

w
is the

maximum velocity of the oscillation and ¹ is the period of the oscillation. The parameter
was later named the Keulegan}Carpenter number KC. The magnitude of KC indicates
the relative importance of drag and inertia forces. When KC is smaller than about 5, the
cylinder is mainly subject to inertia force. This regime is called the inertia regime. But since
the drag force determines the hydrodynamic damping, the drag force may be important in
this regime for certain types of problem, even though it is small compared to the inertia
force. In the KC range of 5(KC(25, named the inertia/drag regime, the drag force and
inertia force, as the direct forces, are both important. Beyond KC'25 the drag force
becomes dominant, but changes in the inertia force may sometimes be signi"cant in
a!ecting natural frequencies of oscillating systems. This regime is de"ned as the drag
regime.

Another important parameter to describe these #ows is de"ned as b"D2/l¹"Re/KC,
the Stokes parameter, where Re is the Reynolds number and l is the kinematic viscosity.
Sarpkaya (1986) showed that the inceptions of the Honji instability of azimuthally directed
vortices (Honji 1981), separation, and turbulence depend on both KC and b. For a given
b value, the oscillatory #ow around a circular cylinder at low KC can be classi"ed into four
di!erent #ow regimes according to how the drag and inertia coe$cients change with KC: (i)
KC(KC

r
, drag coe$cient C

d
decreases as KC increases and the inertia coe$cient C

m
is

independent of KC, while the laminar #ow is attached, stable and two-dimensional; (ii)
KC

r
(KC(KC

md
, C

d
decreases and reaches its minimum value at KC

md
where the #ow

has just separated; in this region, Honji instability, separation and turbulence occur
successively, giving rise to increases in the values of the force coe$cients; apart from these
regions of increase, C

m
keeps nearly constant; (iii) KC

md
(KC(KC*, C

d
increases and

C
m

decreases as KC increases and reach maximum and minimum values, respectively, at
KC*; and (iv) KC'KC*, C

d
decreases and C

m
increases as KC increases further.

The magnitude of KC also indicates di!erent #ow modes. Several di!erent regimes were
illustrated by Williamson (1985) according to how the vortices form, shed, grow and
convect. The regimes are: (i) pairing of attached vortices (0(KC(7), where for KC(1)5
no separation occurs, for KC(4 the #ow was observed to be symmetrical, and for
4(KC(7, the vortices were found to be unequal in strength and the vortex pairs did not
form simultaneously; (ii) transverse street single pair regime (7(KC(15), where one large
vortex is shed during each half cycle and a transverse street forms; (iii) double pair regime
(15(KC(24), where two large vortices are shed in each half-cycle, and two vortex pairs
form in each cycle; (iv) three pair regime (24(KC(32), where there are predominantly
three vortices shed in each half cycle, and four pair regime (32(KC(40) where four pairs
of vortices form in a full cycle. For larger-amplitude #ow, the wake patterns were observed
to be irregular and less repetitive. Obasaju et al. (1988) using a U-tube also reported that
asymmetrical #ow began at KCK4. Bearman et al. (1978) observed some near-repetitive
vortex patterns. The main vortex patterns above KCK8 were found to be a &&sideways''
street (for 8(KC(15) and a cyclic regime (for 15(KC(25). Above KCK25, they
found that the wake resembled a limited length Karman street in each half-cycle.

Combined motion of an oscillatory #ow;
w
sin (-t), where -"2n/¹, and a mean stream

;
c
has also been studied. Conventionally, the in-line force is written as a straightforward

expression of Morison's equation (1), where u(t) is now the combined velocity of the mean
stream and the oscillation:
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where B";
c
/;

w
. It is known that current has e!ects on the motion of vortices and the

in#uence of current on wave loading is quite considerable (Sarpkaya & Isaacson 1981).
A survey by Sarpkaya & Isaacson (1981) indicated that, for at least relatively small
Reynolds numbers and su$ciently small values of B, the drag coe$cient as de"ned by
equation (2) for a current-harmonic combination #ow may be considerably smaller than
that for a harmonic #ow alone, i.e. B"0. In an analysis of wave force data, Dalrymple
(1975) showed that neglecting current could have serious consequences in over-predicting
the drag coe$cient in Morison's equation.

From a desire to investigate the damping of vibrations of o!shore structures excited by
waves and current, Verley & Moe (1979a, b) did considerable analysis and experimental
work for a combined #ow of a cylinder oscillating in a current. The experimental results
were analysed using two equations: Morison's equation (2), and an extended Morison's
equation which contained two drag terms, the steady and oscillatory drag terms, and an
inertial term
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where C
do

and C
dc

are the drag coe$cients for oscillatory #ow and steady #ow. Their results
indicate that the current did a!ect the oscillatory component of force, and neglecting the
e!ect of a current may result in overestimating the oscillatory part of the force and hence the
#uid damping. Obasaju et al. (1991) have studied a combined #ow for b in range of
300}1600 and reduced velocity <

r
(";

c
¹/D) from 0 to 20 with moderate values of KC by

oscillating a circular cylinder in-line with a steady current of water. Their results showed
that for KC"10, 14 and 18, signi"cantly lower values of C

d
tended to occur when there was

a current, but little e!ect of current was found when KC"34. Sarpkaya et al. (1992) carried
out a numerical investigation on a circular cylinder in oscillatory plus steady mean #ow
using the "nite-di!erence method. Their results have revealed the existence of an interesting
wake, comprised of three rows of heterostrophic vortices at certain values of KC and B.

However, the combination motion has not been studied as extensively as planar oscilla-
tory #ow. There is still little information about the e!ect of current and combined e!ect of
current and waves on hydrodynamic loading of the structures. Morison's equation has been
known as a good empirical expression for the in-line force for a planar oscillatory stream.
For more complex oscillating #ows, such as oscillatory #ow plus a steady #ow, there is
a need to examine further whether the equation can still represent the in-line forces with
constant coe$cients C

d
and C

m
throughout a given oscillating cycle as well as it does for

harmonic oscillatory #ow.
With the aim of developing more understanding of the combination motion around

a cylinder, a numerical investigation, using a vortex-based method incorporating vortex
moving particles (discrete vortices) with a "nite-di!erence scheme for the vorticity di!usion,
for combinations of sinusoidally oscillatory #ow plus steady #ow u(t)";

w
sin (-t)#;

c
past a "xed circular cylinder is carried out in the present work. This, planar #ow, is taken to
simulate the e!ect of waves plus a current passing a stationary cylindrical element of
a structure. Since the phenomenon of a cylinder oscillating in a current is similar to that of
a cylinder subjected to a combination #ow of harmonic waves and current, the present
investigation might also give some information on the e!ects of vortex-induced in-line
oscillations.

The objective of the present work is to investigate the e!ects of a small current (B41) on
the vortex shedding, vortex patterns, and forces on the cylinder in an oscillatory #ow. The
extended Morison's equation (2) and equation (3) are examined. In the present calculation,
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turbulent e!ects are not considered and the #ow is assumed to be two-dimensional.
Therefore, the calculation is limited to low Reynolds numbers. The parameter b is set at 200
for all calculations, and KC varies from 0)2 to 26, i.e. in the inertia and inertia/drag regimes.
The current to wave amplitude velocity ratio B covers the range 0}1 in steps of 0)25.

2. THE VORTEX METHOD

The original discrete vortex method was developed for inviscid #ow and later, incorporat-
ing the random walk, was used for viscous #ow (Chorin 1973). The method is based on the
theorem that, in an inviscid incompressible #uid, vorticity is a kinematic property of #uid
particles. It can neither be created nor destroyed. Vortex lines are material lines and remain
continually composed of the same #uid elements. They can only undergo convection and
deformation. In a viscous #uid, however, vorticity is generated by the streamwise pressure
gradient along a boundary and is subject to di!usion as well as convection and deforma-
tion. These processes determine the whole vorticity and hence the velocity "eld, which in
turn controls the production of vorticity.

Chorin (1973) introduced the split-time step approach to solve the Navier}Stokes
equations. These equations expressed in vorticity}velocity form, eliminating pressure, are
sequentially integrated forward in time, separately for the di!usion and then the convection
and deformation. For two-dimensional #ows, which were considered by Chorin and will be
considered here, deformation (stretching and rotation of vorticity) is identically zero. Hence,
the vorticity (u) transport equation is

Du
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,
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. (4)

In that case, one part of the split-time step evaluates the change in vorticity u given by

Lu
Lt

" l+2u, (5)

and the other part, the convection equation,
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Inviscid #ow only requires equation (6) to be solved for the transport of vortcity. This is
performed by moving vortex particles (discrete vortices) which conserve their circulation
with the local velocity "eld. In Chorin's split-time slip method, equation (5) was satis"ed for
viscous #ow in a grid-free manner by the random walk simulation of this equation. This
method has some disadvantages relating to its slow convergence with increasing number of
vortices and the fact that the di!usion coe$cient (l) must be constant or of restricted
variability. Other grid-free methods solve the di!usion equation by computing its Green's
function over interacting vortex &&blobs'' [see Koumoutsakos et al. (1994)].

The method used in the present work takes an alternative approach. The di!usion step
and also the velocity "eld as in a conventional Eulerian #ux method are solved on a "xed
mesh (by a "nite-di!erence method in the present code). However, the convection substep
continues to be solved by a Lagrangian moving-particle method involving discrete vortices.
This hybrid method (Graham 1988) retains some of the advantages of both methods but
requires projection of vorticity and velocity between the two systems (mesh and particles).

Two-dimensional viscous #ow of an incompressible #uid can be described by the
transport equation (4) for the vorticity u and a Poisson equation relating the stream



A NUMERICAL STUDY OF CYLINDERS IN WAVES AND CURRENTS 407
function t (i.e., the velocity "eld) to the vorticity "eld,

+2t"!u. (7)

To calculate the combined #ow past the circular cylinder, a polar mesh (r, h) is used,
where the boundary of the mesh at the wall coincides with the cylinder surface. Since in
the boundary layer every quantity changes rapidly in the radial direction, it is convenient to
use a mesh that has more grid points near the surface in the radial direction than far from
the surface. A conformal transformation, z"Re~*af, is used to transform z(x,y) the physical
polar mesh into a Cartesian computational mesh f(m, g), where R is the radius of the circular
cylinder, a"2n/l and l is the length of the computational domain in the m direction. This
transformation takes the circle to the straight line 04m4l, g"0. With this transforma-
tion, a regular Cartesian mesh in the computational plane becomes a polar mesh which is
uniform in the circumferential direction and expands exponentially in the radial direction.
This satis"es the need for a greater density of mesh points near the cylinder surface in the
physical plane. In the computational plane, equations (4) and (7) become
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where J"(Raeag)2 is the Jacobian of the transformation.
Applying the splitting operator (Chorin 1973), equation (8) is written as a convection part

and a di!usion part:
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The two parts are solved sequentially. In the discrete vortex method, the vorticity "eld is
represented by a large set of discrete point vortices carrying circulation C

k
, k"1, 2,2,N

v6
.

Equation (10) is satis"ed by moving these vortex particles of constant circulation at
the velocity in the computation plane but modi"ed by the Jacobian. The velocity "eld
for this is obtained by solving equation (9) on the mesh where the right-hand side
of equation (9), i.e., the vorticity values on the mesh points, is evaluated from the
circulation C

k
carried by the vortex particles. The following area-weighted projection

scheme achieves this on the Cartesian mesh shown in Figure 1, conserving circulation and
its "rst moments:

u
m
"

C
k
A

m
A2

, m"1, 2, 3, 4, (12)

where C
k
is the circulation of the kth vortex and A is the area of the mesh cell.

Based on this vorticity "eld, equation (9) is solved by "rst using Fourier transformation
with respect to m, since the #ow "eld is periodic in that direction:

t1 "Pte~*km dm.



Figure 1. The area-weighted projection scheme.
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Applying this transformation to equation (9) gives

!k2t1 #tM gg"!Ju, (13)

where Ju is the Fourier transform of Ju. On the body surface, the boundary condition
t"0 is applied. On the far-"eld boundary, t is determined by Biot}Savart integration
from the vorticity on the grid including the e!ect of image vorticity in the body compatible
with the t"0 boundary condition. The calculation of the more exact boundary condition
on the outer boundary is computationally expensive, and only every eighth grid point is
evaluated by this integration, while the rest are determined by interpolation. However, it is
found to improve the solution. After the values of t at the mesh grids have been obtained,
the velocity components on the mesh points are then calculated by applying a central
di!erencing scheme:

u"
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, v"!

Lt
Lg

.

The velocity "eld is then projected onto the vortex particles for convection using the same
area-weighting interpolation scheme:
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The point vortices at (mn
k
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k
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k
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) using "rst-order time integration,
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Up to this point, the method is the same as the inviscid vortex-in-cell method [see, e.g.,
Christiansen (1973)]. In the present work an explicit "nite di!erence scheme is used to solve
the di!usion equation (11). An outer boundary condition u"0 has been used here. The
calculation is stopped before any vorticity of signi"cant size reaches the outer boundary
consistent with this boundary condition. Other boundary conditions are easily applied and
would have been necessary for higher Keulegan}Carpenter numbers than were studied on
this mesh. This condition was not restrictive for the #ows being examined. At the body
surface, the value of vorticity is determined from the stream function and the value of
vorticity at the "rst mesh point o! the surface by a second-order Taylor series satisfying the
no-slip boundary condition at the wall. The change in vorticity due to di!usion, obtained by
solving equation (11) at each grid point, is projected back onto the point vortices using the
same area-weighted projection, creating new vortices at grid points where necessary. This
process conserves the total circulation and its "rst moments and also has the advantage that
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numerical di!usion never becomes comparable with the molecular di!usion, even if l is very
small.

Having obtained the di!used vorticity "eld over the time step, equation (10) is solved
again to give the new velocity "eld. Finally, the point vortices are convected by this velocity
"eld to new positions using a "rst-order method. Higher-order time integration is possible
but was not found necessary here, as the time steps used were small for stability reasons.
This time step is repeated as often as required.

3. FORCE CALCULATIONS

For a cylinder immersed in a time-dependent inviscid #ow u(t), the drag and lift forces
(F

x
, F

y
) may be derived from the momentum theorem including the potential #ow inertia

term and a term for the vortices in the #ow "eld and their images in the cylinder:
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where C
m0

is the inertia coe$cient, equal to 2)0 for a circular cylinder; Z
k

is the complex
coordinate, x

k
#iy

k
, of the kth vortex; and Z*

k
is the conjugate of Z

k
.

Equation (14) has been shown by Wu (1981) to be applicable to viscous #ow. It can be
di$cult to use in experiments since it requires the information of the position and strengths
of the whole vorticity "eld at subsequent times. However, it is convenient to apply in
a numerical calculation, especially when using a vortex method. In the present work, the
sum is calculated from the vorticity on the grid points, rather than from the much larger
number of point vortices in the #ow "eld in order to reduce the amount of calculation.

Another way to calculate the forces is to "nd the pressure and shear stress distributions
on the surface. It is convenient to use a relationship between the vorticity and the pressure
p at the wall,

Lp

Ls K
w

"!k
Lu
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w

,

derived from the Navier}Stokes equation with the non-slip condition at the wall, where s is
the curvilinear coordinate along the surface and k is the viscosity of #uid. Then the pressure
on the surface is obtained from

p
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where p
3%&

is a reference pressure and may be the pressure value at front stagnation point.
Strictly, p

3%&
should be calculated by integrating from far upstream but, since the choice of

p
3%&

does not a!ect the forces, it is often convenient to assume that the stagnation pressure
coe$cient equals to unity, although this is only approximately true. The contribution from
the shear stress is q"!kuD

w
. Therefore, the total force F is obtained by the following

integral on the surface:
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where i denotes the unit complex number and j indicates the jth grid point on the
wall.

The main drawback of this method is that, since p is related to the normal gradient
of vorticity at the body surface, the resulting force is very noisy. A better but more
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computationally expensive method solves a Poisson equation for p with Neumann bound-
ary conditions on the body.

4. EVALUATION OF FORCE COEFFICIENTS

The two forms of in-line force expressions from Morison's equation (2) and equation (3)
have been used to analyse the calculated force time histories. For equation (2) there are two
extreme cases. One is BPR, i.e. <

r
AKC, for which the drag term should reduce to the

form for steady #ow, and the inertia term vanishes. The other one is BP0, i.e. <
r
@KC, for

which equation (2) reduces to equation (1) for a planar oscillatory #ow. It is expected that,
when BPR, C

d
in equation (2) and C

dc
in equation (3) tend to the same value as for

a steady #ow; and, when BP0, C
d
and C

do
tend to the value for a planar oscillatory #ow.

For a planar oscillatory #ow, the force coe$cients in equation (1) are assumed to be
constant through the cycle and usually determined using Fourier averaging (Keulegan
& Carpenter 1958). For a combined #ow of a planar oscillatory #ow and a steady current,
the in-line force may be divided into a mean part FM

x
and an oscillating part F@

x
(t) (see

Figure 2):
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In equation (2) the steady drag and oscillatory drag forces are mutually dependent which
makes the determination of the drag force coe$cient more complex. In the present work, it
is attempted to determine the drag coe$cient both from the oscillatory part of the force and
the mean part of the force. This gives two drag coe$cient values for equation (2), and in
general these two drag coe$cient values are not equal. In such a way, the e!ect of a small
current on the force coe$cients is then investigated by comparing these drag coe$cient
values with those for the planar oscillatory #ow. The drag coe$cient evaluated from the
oscillatory part of the force is referred to here as the oscillatory drag (coe$cient C

d1
) and

from the mean part of the force referred to here as the steady drag (coe$cient C
d2

).
Let
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[(2B2#1) sin~1(B)#3BJ(1!B2)],
Figure 2. The in-line force on a cylinder in waves and a current.

P
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with g(t)"0 when B"0. Writing equation (2) in terms of an oscillatory component and
a mean component of force, and using C

d1
and C

d2
, we have
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The values of C
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and C
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are then determined by the following formulae:
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and b
1
"8/3p when B"0.

In equation (3) the steady and oscillatory drag forces are independent. The determination
of the drag coe$cients is relatively simple as the oscillatory part and the mean part are
directly related to the oscillation velocity and the steady #ow velocity. The formulae are
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When B"0, C
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"0. The inertia coe$cient C
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in both equations (2) and (3)
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The hydrodynamic damping C
dmp

is given by the drag forces in phase with the oscillatory
velocity and can be calculated by the following formula (Verley & Moe, 1979b):
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w
¹P

T

0

F
x
(t)sin (-t) dt.

Given the force F
x
(t) from equations (2) and (3), C

dmp
has the following relationships with

C
d1

and C
do
:

C
dmp

"1
2
oD;

w
b
1
C

d1
, (21)

C
dmp

"

4oD;
w

3n
C

do
. (22)

5. VALIDATION TEST

In order to examine the implementation of the numerical model on a computer and the
reliability of the computer code, a set of initial tests in steady #ow at low Re and in a planar
oscillatory #ow at low KC numbers were carried out. Those values of Re and KC were
selected at which the #ows are well documented either by experiments or by theoretical
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solution so that comparison may be made. For the steady #ow, Re"100 is selected. For the
oscillatory #ow, KC"0)2, 0)5, 1)0 and 2)0 with b"200 are chosen. Drag and inertia
coe$cients, Strouhal number St ("f

s
D/;

c
, where f

s
is the vortex shedding frequency), force

time history and vortex patterns are examined for the purpose. The force on the body is
calculated both using the momentum theorem and by calculating the surface pressure and
skin friction from the body surface vorticity and its normal gradient as discussed above.

A large number of preliminary calculations were "rst carried out to determine the
optimum values of time step and mesh size for both mean and oscillatory #ow cases. It was
found that the force obtained by calculating surface pressure and skin friction is quite
sensitive to the mesh size, especially to the size of the cells near the wall. This is because the
surface pressure is calculated from values on the two mesh grids next to the wall. In
contrast, the result from the momentum theorem appears to be much less sensitive to the
change of the cell size near the wall. A typical mesh 128]128 (r]h) which has typically
more than 20 points lying in the boundary layer is used for the steady #ow. The preliminary
calculations indicate that a value of D(t;

c
/D)"0)00125 is small enough for both force

calculations to produce satisfactory agreement in the results under the selected mesh size.
For the oscillatory #ow, a mesh 80]128 is used and D(t;

c
/D) was varied from 0)001 and

0)0001.
The vortex pattern for Re"100 (with no oscillatory motion) at time D(t;

c
/D)"50 is

shown in Figure 3. The "gure shows a vortex wake composed of staggered negative and
positive vortices, i.e. the well-known von Karman vortex street. The values of St and
C

d
calculated using the two methods of computing force are compared in Table 1 with some

previous experimental data and computational results of other investigators. The result
from the momentum theorem yields very good agreement with experimental data and some
of the previous computational results. However, the value of the drag coe$cient obtained
from surface pressure and skin friction calculations is higher than both the experimental
data and the main computational results. The lift force is similarly somewhat above
accepted computational values. Figure 4 shows the drag and lift time histories where the
solid lines are from the momentum theorem and the dashed lines from pressure and skin
friction calculations.

The results of the drag and inertia coe$cients for a cylinder in an oscillatory #ow with
b"200 are illustrated in Figure 5, together with the theoretical result by Wang (1968), the
experimental data of Bearman et al. (1985) and Justesen (1991) for b "196. It is shown that,
as KC increases, the calculated drag coe$cient follows the theoretical line well when KC is
less than about 2, drops down to a minimum value at about KC"3, and then increases as
KC increases. The calculated inertia coe$cient shows approximate independence of KC
when KC is less than about 2 in agreement with the theory and then decreases rapidly for
KC52. The force calculations from both the momentum theorem and the surface pressure
and skin friction give close results and are generally in good agreement with the theory and
experimental data for KC(10.
Figure 3. Vortex pattern in the wake, Re"100, t;
c
/D"100.



TABLE 1

Steady #ow past a circular cylinder at Re"100

Investigators St C
d

C
l3.4

Experiments
Lienhard (experiment, Chaplin et al. 1992) 0)155}0)173 1)35}1)49 *

Computations
Arkell & Graham* (discrete vortex) * 1)33 0)17
Beaudan & Moin* (high-order "nite di!erence) * 1)35 0)24
Chaplin ("nite di!erence, Chaplin et al. 1992) 0)152 1)82 0)20
Chaplin* (spectral di!erence) * 1)29 0)20
Gushchin* ("nite di!erence) * 1)38 *

Karniadakis* (spectral-element) * 1)42 0)26
Kravchenko* (Galerkin B-spline) * * 0)23
Mittal* (spectral method) * * 0)23
Savvides* (spectral di!erence) * 1)30 0)16
Savvides* (spectral element) * 1)32 0)14
Sherwin* (spectral element) * 1)36 0)24
Stansby (random vortex, Chaplin et al. 1992) 0)169 1)36 *

Younis* ("nite di!erence) * 1)46 0)34
Younis ("nite di!erence, Chaplin et al. 1992) 0)168/0)174 1)43/1)45 *

Present result (momentum theorem, discrete vortex) 0)162 1)37 0)20
Present result (surface pressure and skin friction) 0)162 1)48 0)22

*Bearman (1998).

Figure 4. The drag and lift coe$cient time histories for Re"100. Solid line: momentum theorem;
dashed line: pressure and skin friction.
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Above KC"10, the calculated C
d

is somewhat lower and the C
m

is higher than the
experimental data. It is thought that this may be due to the fact that the mesh system used is
still not "ne enough, since it was found that the calculations for higher KC need a very "ne
mesh to get satisfactory results (Zhou 1994). However, recent computations by Lin et al.
(1996) show similar departure from the experimental data when a very "ne mesh is used.
The departure may be due to three dimensionality developing in the #ow. For planar
oscillatory #ow past a circular cylinder with b"196, the Honji instability begins at
KC+1)63. At KC'3 the boundary layer separates and will retain some of this strong
three dimensionality which the present two-dimensional laminar code cannot capture, well
into the higher KC regime.



Figure 5. (a) Variation of C
d
with KC and (b) variation of C

m
with KC for planar oscillatory #ow, for

the present results b"200: **, theory (Wang 1968); --d--, experiments (Bearman et al. 1985); K,
computation (Graham & Djahansouzi 1989); #, computation (Justesen 1991); s, present results

(momentum theorem); n, present results (pressure and skin friction).
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In the above, the results for force calculated by the momentum theorem appear to be the
more independent of the mesh size and time step. Therefore, all of the force calculations in
the rest of the work use the momentum theory.

6. EFFECTS OF CURRENT

In order to study the e!ects of a small current, the combination of sinusoidally oscillatory
#ow plus steady #ow with B41 is investigated. The details of the #ow cases are listed in
Table 2. The calculated in-line forces are analysed assuming each of the forms of Morison's
equation as given in two equations (2) and (3). At present, we are not aware of any data set of
low Reynolds numbers to which we can make direct comparisons for validation. However,
we feel that the present results exhibit many features of the combined #ow and is therefore
worth presenting. Attention is drawn to (i) the e!ects of small current on force coe$cients,
(ii) the comparison between equations (2) and (3), and (iii) the changes in the vortex pattern
due to the small current.

6.1. FORCE COEFFICIENTS

The results versus KC of the force coe$cients C
d1

, C
d2

, C
do
, C

dc
and C

m
are presented in

Figure 6(a}e) for various velocity ratios. For the version of Morison's equation (2), the
value of C

d1
is seen to decrease as B increases in the range of KC52 approximately

[see Figure 6(a)] and appears to decrease regularly when KC is smaller than about 1.
However, this latter behaviour results from the de"nition of C

d1.
It is obvious that
TABLE 2

Flow cases covered by the present work

B KC <
r

Re

0)25 0)2}26 0)05}6)5 10}1300
0)50 0)2}26 0)10}13 20}2600
0)75 0)2}26 0)15}19)5 30}3900
1)00 0)2}26 0)20}26 40}5200
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multiplying C
d1

by 3nb
1
/8 should collapse C

d1
onto the same values as C

do
[refer

to equations (17a), (18) and (18a)] and this turns out to be the case [see Figure 6(c)].
The value of C

d2
is also seen to decrease as B increases [see Figure 6(b)]. B ot h the

values of C
d1

and C
d2

are seen to be lower than the drag coe$cient value for the
planar oscillatory #ow alone. It is evident that, if a single drag coe$cient value equal to
the one for the planar oscillatory #ow alone is used in equation (2), the drag force
of the combined #ow of oscillatory #ow and a steady current would be overpredicted. This
has clearly shown that the presence of the current is to reduce the drag coe$cient C

d
in

equation (2) for the cases covered in this study.
For the version of Morison's equation with two drag coe$cients, i.e., equation (3), the

results show that the presence of a current has a signi"cant e!ect on C
do

and C
m

only when
KC is larger than about 2 [see Figure 6(c,e)]. The current appears to increase C

do
and

decrease C
m
. The amount of the in#uence in C

do
and C

m
increases as B. When the current is

very small, e.g. B"0)25, the value of C
do

is seen to be quite close to the value for the planar
oscillatory #ow. This is consistent with the "ndings in the investigation of Verley & Moe
(1979b). When KC is smaller than about 1, the value of C

do
for a wider range of B appears to

be very little changed from the value of drag coe$cient for the planar oscillatory #ow in the
Stokes regime. Thus, the current has very little in#uence on C

do
in this regime. Similarly,

C
m

is also not very greatly a!ected by the presence of the current in this regime. Since
C

do
represents the #uid damping [see formula (22)], Figure 6(c) has shown that the presence

of the current does not in#uence #uid damping very much when the oscillation KC is
less than about 1 and increases the #uid damping as B increases when KC is larger than
about 2. The drag coe$cient C

dc
from the mean part of the force decreases as B increases

[Figure 6(d)].
Figure 6. Variation of (a) C
d1

:*s*, B"0)00; }}m}}, B"0)25; ---K---, B"0)50; }}r}}, B"0)75;
}}n}}, B"1)00, (b) C

d2
, (c) C

do
, (d) C

dc
and (e) C

m
with KC for a circular cylinder.

Note: in (b) and (c), *s*, denotes C
d1

with B"0)00.



Figure 6. (Continued).
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In the moderate range of KC (8(KC(34), it is known that the presence of a current
reduces the drag coe$cient C

d
in equation (2) and increases the inertia coe$cient. This has

been shown by some previous studies, e.g. the experimental work presented by Obasaju
et al. (1991), in which it was found that lower values of C

d
tended to occur for KC"10, 14

and 18 when there was a current. The reduced velocity;
c
¹/D was in the range from 0 to 20

in the experiment. When KC"34, the value of C
d
was found to be nearly independent of

the reduced velocity and close to the value for planar oscillatory #ow. In a still higher range
of KC, it is reported that the presence of current has little e!ect on the coe$cients (Sarpkaya
& Storm 1985).

It is found from the study of planar oscillatory #ow (without mean current) that vortex
formation tends to cause an increase in drag coe$cient C

d
and a decrease in C

m
. A max-

imum in C
d
and minimum in C

m
around KC"15 is associated with a large vortex formed

behind the cylinder (Sarpkaya & Isaacson 1981). It is seen in Figure 6(c) and 6(e) that the
variations in oscillatory drag coe$cients due to current are strongly and inversely corre-
lated to the variations in inertia coe$cient and di!er from their values for the planar
oscillatory #ow (when KC52). Where C

do
exhibits an increase, C

m
exhibits a reduction.

This suggests that the e!ects are caused by changes in the formation and shedding of the



Figure 7. Comparison of drag forces: }f}f}, equation (2) with C
d1

and C
d2

; }s}s}, equation (2) with
C

d
values for planar oscillatory #ow.

Figure 8. Comparison of drag forces: **, equation (2) with C
d1

and C
d2

; }}}, equation (2) with
C

d
values for planar oscillatory #ow.
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vortices with the increasing presence of mean current. The changes in vortex pattern due to
current will be discussed in Section 8.

In reality, wave-induced #ows in the ocean are often coupled with small currents.
The above investigation suggests that calculations which ignore the e!ect of the current and
use the value of C

d
of planar oscillatory #ow in equation (2) and hence equation (21) for the

damping f orce for the combined #ow can overpredict the drag and the damping forces. This
agrees with the observation on the e!ect of current made by Sapakaya & Isaacson (1981).
This is evident as shown in Figures 7 and 8 where a group of results of drag force
F
x$3!'

calculated from equation (2) using C
d1

for B"0)0, and C
d1

& C
d2

for di!erent values
of B are illustrated. Figure 7 shows the results for KC"1, 3, 8 and 18 with a "xed value of
(B"0)5), while Figure 8 is for KC"4 with B varying from 0)25 to 1 in steps of 0)25. It is
seen that the results obtained by using C

d1
(B"0)0), the drag coe$cient for oscillatory #ow

alone, give signi"cantly larger amplitudes of the drag forces, always larger than the results
obtained by using the C

d1
and C

d2
.

6.2. THE VALUE OF KC
md

The minimum value of the oscillatory drag coe$cient usually occurs at or near the onset of
separation for a circular cylinder in planar oscillatory #ow (Sarpkaya 1986). The value of
Keulegan}Carpenter number KC

md
at which this minimum value of the oscillatory drag

coe$cients C
d1

(or C
do
) occur (KC+2) is not seen to be signi"cantly a!ected by the

presence of current in the present results [see Figure 6(a,c)]. This suggests that in the case of
the combination motion of small current and small oscillations past a circular cylinder this
minimum value of the oscillatory drag coe$cients does not occur at or near the onset of
separation as it does for the planar oscillatory #ow because the current alone produces
separation. This is supported by further investigations on vorticity "elds. One of the results
from these investigations is shown in Figure 9(a) for KC"0)5 and B"1)0 (Re"100). At
this KC value, for planar oscillatory #ow alone, the #ow is still attached while in a steady
current at this value of Re a von Karman vortex street is formed. It is found that for the
combination motion there is a long period after the start up of the #ow during which the
numerical solution continues to produce "rst attached #ow and a symmetric wake but
eventually separation and an asymmetrical wake with vortex shedding develops.

Regular vortex shedding is predicted [see Figure 9(a)], and the in-line force is seen to be
as regular as for the planar oscillatory #ow [see Figure 9(b)]. The oscillatory drag and
inertia coe$cients appear to take almost the same values as for the planar oscillatory #ow
[see Figure 6(c,e)]. The amplitude of lift force appears to be increased to about twice the
value for the steady current case at Re"100 [see Figure 9(c)]. In this result, the frequency
of oscillation is the much higher component (about 12)5 times higher), compared to the
frequency of vortex shedding. There is little possibility that a synchronization can occur in
this situation. The lift force is still much smaller than the in-line force [see Figure 9(b)] and is
therefore less important.

7. MORISON'S EQUATION

7.1. COMPARISON BETWEEN EQUATIONS (2) AND (3)

Comparisons between calculated and reconstructed force histories from equations (2) and
(3), together with the di!erences between the reconstructed forces and the calculated force,
are given in Figure 10(a}d) for KC"1, 3, 8, and 18 respectively where B"0)5. The
reconstructed forces from the two equations are both seen to be very close to the computed



Figure 9. (a) Vortex pattern in the wake, KC"0)5 and Re"100. (b) Drag and lift force time histories,
KC"0)5 and Re"100:**, F

y
; ----, F

x
. (c) Lift force time histories of steady current with Re"100

and combined #ow with KC"0)5 and Re"100 (B"1)0).
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TABLE 3

The r.m.s. values of residue of reconstructed forces DF
3.4

for B"0)5

Equations KC"1 KC"3 KC"8 KC"18 KC"26

1 Eq. (2) with C
d1

& C
d2

0)063 0)082 0)155 0)122 0)145
2 Eq.(3) with C

do
& C

dc
0)031 0)064 0)124 0)129 0)155

3 Eq.(2) with C
d1

at B"0 0)097 0)105 0)191 0)181 0)185
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force for KC"1 where the inertia force is the dominant part of the total force. As KC
increases and the drag force becomes more important, the divergence of the reconstructed
forces from the calculated force becomes larger.

In Figure 10(c}d) the higher frequencies may be seen in the computed force history which
come from the vortex shedding. These higher frequency components cannot be simulated
by equations (2) and (3) with undisturbed velocity and constant coe$cients evaluated from
a Fourier average. In general, the force coe$cients, assuming that equations (2) and (3) hold
exactly at all times through the cycle, vary with time. In the cases shown in Figure 10(c,d), it
is conceivable that these force coe$cients vary with time very much.

For comparison, DF
3.4

, the r.m.s. value of the residue of various reconstructed in-line
forces less the actual in-line force (computed), de"ned as

DF
3.4

"

2

(F
x.!9

!F
x.*/

) S
+n

i/1
(F*

xi
(t)!F

xi
(t))2

n
, (23)

is presented, where F*
xi
(t) and F

xi
(t) are the reconstructed and actual forces respectively, and

1
2
(F

x.!9
!F

x.*/
) is the amplitude of the computed force. The results for B"0)5 at di!erent

KC are given in Table 3. It is seen that, for the given value B"0)5, equation (3) gives
a better force "t than equation (2) when KC48, while (2) tends to give a better one when
KC518 (see rows 1 and 2 in Table 3). Equation (2) with a single drag coe$cient value for
planar oscillatory #ow with no current (i.e. row 3 in Table 3) gives a less accurate force "t
than the others. The value of DF

3.4
generally increases as KC increases. This is associated

with the formation and shedding of more vortices per #ow cycle as KC increases and the
fact that equations (2) and (3) with the time-averaged coe$cients are not able to model the
high harmonics generated by the vortex shedding in the moderate KC regime.

7.2. TWO EXTREME CASES

Two extreme cases studied here are as follows:<
r
AKC, i.e. large B, and KCA<

r
, i.e. small B.

For the "rst extreme it has been found that there is no signi"cant coupling between the
small-amplitude oscillations and the vortex shedding. The drag coe$cient associated with
the mean #ow would essentially remain constant at its steady-state value, at least for the
velocity ratio B larger than about 7 (Sarpkaya & Isaacson 1981). For the second extreme,
Verley & Moe (1979b) suggested that one may tentatively conclude that for high waves
(oscillatory #ow) plus a small current (i.e. small B), the modi"ed Morison's equation (2) may
be used with some con"dence using values of C

d
and C

m
obtained under pure wave (planar

oscillatory motion). An investigation for these two cases, with B"10 and Re"200 and
with B40)1 and KC"4, is carried out in this section.

The result for the "rst extreme, i.e. combination #ow with B"10 and Re"200, shows
that the r.m.s. value of the residue between computed force and the reconstructed force



TABLE 4

The r.m.s. values of residue of reconstructed forces for KC"4

Equation B"0)05 B"0)1 B"0)15 B"0)25
Equation (2) 0)051 0)057 0)070 0)074

Figure 11. In-line and lift forces on a circular cylinder in combined #ow with Re"200 and B"10:
**, calculated force for the combination #ow; ----, calculated force for steady #ow of Re"200; -)-)-,

reconstruction force using equation (2) with C
d
value of steady #ow.
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using equation (2) with a value of C
d
taken from the steady current case is very similar to

that using equations (2) with C
d1

and C
d2

(only 1)3% di!erence). The results of force
histories are plotted in Figure 11. It is seen that the mean value of the in-line force and the
lift force are very close to the values for the steady current and the reconstructed force by
using the value obtained for the steady current case at this velocity ratio gives a good "t to
the computed force.

For the other extreme case, i.e. very small B, the r.m.s. values of residue of the reconstruc-
ted force using equation (2) with C

d
and C

m
v alue of planar oscillation #ow are illustrated in

the Table 4, where KC"4 and a variable B.
As shown in the table, the r.m.s. values of the residue between the reconstructed force and

the computed force are less than 10% which suggests that, when B (0)25, use of equation
(2) with C

d
and C

m
values obtained from planar oscillatory #ow can give reasonably good

in-line forces "t for the combination #ow.

8. DISCUSSION ON VORTEX PATTERNS

It is known that there is a general relationship between KC and the onset of #ow separation,
symmetrical and asymmetrical vortices for planar oscillatory #ow as has been described
earlier. It is attempted in this section to examine this relationship when there is a current.
The vortex patterns presented here are for B"1.

8.1. ONSET AND SHEDDING OF VORTEX WAKES

At small oscillation KC (small enough to give attached #ow when there is no current) with
a very small current so that Re 447, there is no separation. The force exerted by #uid
motion on the cylinder is dominated by the oscillations and the oscillatory drag and inertia
coe$cients are hardly a!ected by the small current.



Figure 12. (a) Vortex pattern in the wake for combined #ow with KC"1)0 and Re"200 (B"1); (b)
force time histories for combined #ow with KC"1)0 and Re"200; (c) lift force time histories of

a combined #ow with KC"1)0 and Re"200 and a steady current with Re"200.
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At slightly larger amplitude of oscillation, small KC plus slightly larger current such that
Re&100 (to keep B"1), the Karman vortex street, which occurs due to the current alone
at Re"100, is retained [see Figure 9(a)]. The period taken by a vortex to form and shed
from one side of the cylinder is more than six times the period of the oscillations.

As KC increases up to 1 and Re increases to 200 (keeping B"1), one large vortex
forms in the near wake and is shed respectively from each side of the near wake to form
a Karman vortex street [see Figure 12(a)]. The amplitude of the lift force coe$cient is seen
to be increased to about twice as large, compared to that for a steady current alone [see
Figure 12(c)].

8.2. SYMMETRIC SHEDDING*A PAIR OF SYMMETRIC VORTICES PER CYCLE

As KC increases up to 2 and Re to 400, one pair of symmetric vortices is shed each cycle.
One pair of vortices with opposite sign starts to form behind the cylinder as the oscillatory
motion moves with the current. When the oscillatory motion moves against the current,
they move towards the cylinder and another pair of small vortices forms and grows. As the
oscillation motion starts to move with the current again, the new pair of vortices symmetric-
ally grows, rolls up and moves away from the cylinder on each side, while the previous pair
of vortices spreads out [see Figure 13(a)]. Simultaneously, another pair of vortices, similar
to the "rst pair of vortices, forms behind the cylinder. In each cycle, two pairs of symmetrical
vortices form. The second pair is shed, while the "rst pair spreads out. As the oscillatory
motion continues to move with and against the current, a series of pairs of vortices



Figure 13. (a) Symmetric vortex shedding* a pair of symmetric vortices per cycle of combined #ow
with KC"2 and Re"400 (B"1). (b,c) Comparison of vortex pattern in the wake: (b) present

computational results and (c) experimental visualization by Couder & Basdevant (1986).
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shed from the cylinder and move away downstream. The vortex pattern in the wake
[Figure 13(b)] is seen to be similar to an analogous experiment visualized by Couder and
Basdevant (1986) [see Figure 13(c)] using soap "lm which exhibits two-dimensional vortex
shedding, where the cylinder is oscillating in the #uid with the same frequency of the
symmetric vortex shedding.

8.3. SYMMETRIC SHEDDING*A PAIR OF SYMMETRIC VORTEX PAIRS PER CYCLE

As KC increases up to 3)0 and Re to 600 (to keep B"1), the process of forming, growing
and shedding of vortices is very similar to the one described above, but the second pair of
vortices forms earlier, and the "rst pair of the vortices does not spread out but combines
with the second pair as a pair of symmetrical couples [two vortices of opposite sign, see
Figure 14(a)]. At each cycle, one pair of symmetrical vortex pairs forms, grows and sheds. As
the oscillatory motion moves with and against the current, a series of double vortex pairs
are generated and form a nearly symmetrical pattern in the near wake [see Figure 14(b)].
However, this wake is very unstable and soon starts to reorganize itself to form a Karman-
type alternating vortex wake. Similar phenomena are also seen for the #ow with KC"2
and Re"400 in the far wake. This process is associated with the instability of the
symmetric vortex wake and the greater stability of a Karman-type alternating vortex wake.
This latter is formed rather further downstream than would occur for a cylinder in a current
alone.

Verley & Moe (1979b) also found from their experiments that the wake changes from
a symmetric to an alternating wake commencing downstream in the wake and then working
its way up to the cylinder with the wake remaining symmetric for a distance downstream of
typically three to "ve diameters for low B values.
Figure 14. Symmetric vortex shedding * a pair of symmetric couples per cycle, at di!erent t/¹;
combined #ow with KC"3 and B"1.



Figure 15. Asymmetric shedding* a pair of asymmetric couples per cycle, at di!erent t/¹; combined
#ow with KC"4 and B"1.
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8.4. ASYMMETRIC SHEDDING*A PAIR OF ASYMMETRIC COUPLES PER CYCLE

As KC increases further up to 4 (keeping B"1), the in#uence of the asymmetrical wake
makes its way right up to the cylinder, immediately after two symmetrical pairs of vortex
couples have been shed in the "rst two cycles. A pair of asymmetrical eddies forms in the
"rst half of the fourth cycle and is then shed asymmetrically as two associated vortex pairs
with the second pair of vortices, growing in the second half of the cycle. One pair of the
growing vortices appears to be larger than the other [see Figure 15(b)]. In the "fth cycle, the
same procedure is repeated but the pairs formed on the other side appears to be the larger,
and the pattern in this cycle is the mirror image of that in the fourth cycle (Figure 15).

9. CONCLUSIONS

An investigation on combined motion of an oscillatory #ow plus a current past a circular
cylinder has been carried out. These #ows are computed for Keulegan}Carpenter numbers
in the range 0)2}26 and with the Stokes parameter set at 200. A vortex-based method
incorporating Lagrangian vortex particles with an Eulerian, mesh-based, "nite-di!erence
scheme for the velocity "eld and viscous di!usion is used. The e!ects of small current on
force coe$cients and vortex shedding and vortex pattern in the wake are examined. An
extended Morison's equation and an equation with two drag coe$cients are examined and
comparisons between these two equations are made.

It is found that the e!ect of current is to reduce the drag coe$cient for the case covered in
the present study. This is in agreement with some previous experiments. The current, if it is
large enough, causes the #ow to separate in the low KC regime, even though the drag
coe$cients from the oscillatory component of the in-line force behave nearly identically as
for planar oscillatory Stokes #ow in this regime.

The results of analysing the residues between reconstructed force, using the extended
Morison's equation (2) and the basic simulated force data and for the equation with two
drag terms (3), suggest that the former gives a better force "t for the higher KC range
(KC518), while the latter does so for the lower range (KC 48). It is found that, when
B (0)25, i.e. very small current, use of the extended Morison's equation (2) with C

d
and

C
m

values obtained from planar oscillatory #ow can give reasonably good in-line forces "t
for the combination #ow cases covered in the present study.

In the presence of signi"cant current, symmetric vortex shedding and asymmetrical
vortex shedding are found at low values of KC. In the symmetric vortex-shedding case, the
symmetrical pattern of the wake persists a distance downstream from the cylinder and then
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becomes unstable and asymmetrical. The asymmetric in#uence makes its way up to the
cylinder as KC increases. When KC increases up to a critical value, e.g. KC"6 for B"1,
this e!ect reaches the back of the cylinder and changes the vortex shedding itself from
symmetric to an asymmetric pattern. Hence, the wake always tries to form a Karman type
of vortex street, irrespective of how the vortices are shed from the cylinder. The phenomena
predicted by the numerical simulation of vortex formation, shedding and vortices moved
backward and forward by oscillatory #ow in the current are similar to e!ects observed in
some previous experiments.

Finally, this study has shown that the vortex method used in the present work gives good
representations for steady #ow, oscillatory #ow and also for the combination of the two
#ows for the force coe$cients, Strouhal numbers and vortex patterns in the wake.
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